推荐盐城网站开发wordpress登陆页面

张小明 2026/1/3 10:49:36
推荐盐城网站开发,wordpress登陆页面,网站开发html,广州做网站推广的公司一、背景意义 随着生物技术的迅猛发展#xff0c;试剂盒在医学诊断、环境监测及食品安全等领域的应用日益广泛。试剂盒的检测结果不仅直接影响实验室的工作效率#xff0c;还对临床决策和公共健康具有重要意义。然而#xff0c;传统的试剂盒检测方法往往依赖人工操作#x…一、背景意义随着生物技术的迅猛发展试剂盒在医学诊断、环境监测及食品安全等领域的应用日益广泛。试剂盒的检测结果不仅直接影响实验室的工作效率还对临床决策和公共健康具有重要意义。然而传统的试剂盒检测方法往往依赖人工操作容易受到人为因素的影响导致结果的准确性和一致性不足。因此开发一种高效、准确的自动化检测系统显得尤为重要。近年来深度学习技术在计算机视觉领域取得了显著进展尤其是目标检测算法的不断优化与创新使得自动化检测系统的实现成为可能。YOLOYou Only Look Once系列模型以其快速、准确的特性成为目标检测领域的佼佼者。YOLOv8作为该系列的最新版本进一步提升了检测精度和速度适用于实时检测场景。然而尽管YOLOv8在多种应用中表现出色但在特定领域如试剂盒检测中仍然存在一些挑战如样本不平衡、类别特征相似性等问题这些问题可能导致模型在特定类别上的识别率下降。本研究旨在基于改进的YOLOv8模型构建一个高效的试剂盒检测结果识别系统。通过对现有YOLOv8模型进行优化结合针对试剂盒检测的特定需求设计出适合于该领域的目标检测算法。数据集的构建是本研究的基础所使用的数据集包含2641张图像涵盖4个类别0、1、neg、pos为模型的训练和验证提供了丰富的样本。这些类别分别代表了试剂盒检测结果的不同状态其中“pos”表示阳性结果“neg”表示阴性结果而“0”和“1”则可能代表不同的检测指标或状态。这种多样化的类别设置为模型的学习提供了良好的基础。在研究意义上基于改进YOLOv8的试剂盒检测结果识别系统不仅能够提高检测的自动化水平减少人工干预带来的误差还能显著提升检测效率降低检测成本。通过实现快速、准确的试剂盒检测结果识别能够为实验室提供实时反馈促进临床决策的及时性和准确性。此外该系统的成功应用将为其他领域的自动化检测提供借鉴推动相关技术的进一步发展。综上所述本研究不仅具有重要的理论价值还具备广泛的应用前景。通过对YOLOv8模型的改进与优化结合试剂盒检测的实际需求构建高效的识别系统将为生物医学、环境监测等领域的自动化检测提供有力支持推动相关技术的进步与应用普及。二、图片效果三、数据集信息本数据集专为改进YOLOv8的试剂盒检测结果识别系统而设计旨在提升模型在特定应用场景下的检测精度和效率。数据集包含2641幅图像涵盖了四个主要类别分别为0、1、neg和pos。这些类别的划分不仅反映了不同的检测目标还为模型的训练提供了丰富的多样性确保其在实际应用中能够有效识别和分类不同类型的试剂盒。在数据集的构建过程中特别注重图像的多样性和代表性以确保模型能够适应各种可能的场景。每一幅图像都经过精心挑选确保其在不同的光照条件、背景复杂度以及试剂盒的不同外观特征下均能提供有效的训练数据。这种多样性对于深度学习模型的训练至关重要因为它能够帮助模型学习到更为广泛的特征从而提高其在未见数据上的泛化能力。数据集中每个类别的定义也经过深思熟虑。类别0和1代表了试剂盒的两种不同状态或类型而neg和pos则分别表示负样本和正样本。这种分类方式使得模型在训练过程中能够清晰地理解不同类别之间的差异从而在实际应用中做出更为准确的判断。例如正样本pos可能代表符合检测标准的试剂盒而负样本neg则代表不符合标准的试剂盒。这种明确的分类不仅有助于提高模型的检测精度也为后续的结果分析提供了便利。此外本数据集遵循CC BY 4.0许可证允许用户在遵循相关条款的前提下自由使用和修改数据。这种开放性不仅促进了学术界和工业界的合作也为研究人员提供了更多的灵活性使他们能够根据自身的需求对数据集进行调整和优化。为了确保数据集的有效性和可靠性所有图像均经过严格的质量控制确保其清晰度和可用性。这一过程不仅提高了数据集的整体质量也为模型的训练提供了坚实的基础。经过这样的精心准备数据集能够为YOLOv8模型的训练提供强有力的支持帮助其在试剂盒检测任务中取得更好的性能。综上所述本数据集的构建充分考虑了目标检测的需求通过丰富的图像数量和明确的类别划分为改进YOLOv8的试剂盒检测结果识别系统提供了理想的训练基础。随着深度学习技术的不断发展期待该数据集能够为相关研究和应用带来积极的推动作用。四、核心代码python import sys import subprocess from QtFusion.path import abs_path def run_script(script_path): 使用当前 Python 环境运行指定的脚本。 Args: script_path (str): 要运行的脚本路径 # 获取当前 Python 解释器的路径 python_path sys.executable # 构建运行命令使用 streamlit 运行指定的脚本 command f{python_path} -m streamlit run {script_path} # 执行命令并等待其完成 result subprocess.run(command, shellTrue) # 检查命令执行结果如果返回码不为0则表示出错 if result.returncode ! 0: print(脚本运行出错。) # 主程序入口 if __name__ __main__: # 获取脚本的绝对路径 script_path abs_path(web.py) # 运行指定的脚本 run_script(script_path)代码说明导入模块sys用于获取当前 Python 解释器的路径。subprocess用于执行外部命令。abs_path从QtFusion.path导入的函数用于获取文件的绝对路径。run_script 函数接受一个参数script_path表示要运行的 Python 脚本的路径。使用sys.executable获取当前 Python 解释器的路径。构建一个命令字符串使用streamlit模块运行指定的脚本。使用subprocess.run执行构建的命令并等待其完成。检查命令的返回码如果不为0表示脚本运行出错打印错误信息。主程序入口使用abs_path获取web.py脚本的绝对路径。调用run_script函数来运行该脚本。这个程序文件名为ui.py其主要功能是通过当前的 Python 环境运行一个指定的脚本具体是一个名为web.py的文件。程序首先导入了必要的模块包括sys、os和subprocess以及一个自定义的路径处理函数abs_path。在run_script函数中首先获取当前 Python 解释器的路径这样可以确保使用的是正确的 Python 环境。接着构建一个命令字符串该命令用于运行streamlit这是一个用于构建数据应用的库。命令中包含了 Python 解释器的路径和要运行的脚本路径。随后使用subprocess.run方法执行这个命令。这个方法会在一个新的子进程中运行命令并等待其完成。如果命令执行的返回码不为零表示脚本运行过程中出现了错误此时会打印出“脚本运行出错”的提示。在文件的最后部分使用if __name__ __main__:语句来确保只有在直接运行该脚本时才会执行以下代码。这里指定了要运行的脚本路径即web.py并调用run_script函数来执行这个脚本。总的来说这个文件的作用是为运行一个 Streamlit 应用提供了一个简单的界面确保在正确的 Python 环境中执行指定的脚本。python import torch from torch import nn from torch.nn import functional as F from ultralytics.nn.modules import LayerNorm2d class MaskDecoder(nn.Module): MaskDecoder类用于生成图像的掩码及其质量评分使用变换器架构根据图像和提示嵌入进行掩码预测。 def __init__(self, transformer_dim: int, transformer: nn.Module, num_multimask_outputs: int 3, activation: Type[nn.Module] nn.GELU, iou_head_depth: int 3, iou_head_hidden_dim: int 256) - None: 初始化MaskDecoder类。 Args: transformer_dim (int): 变换器模块的通道维度。 transformer (nn.Module): 用于预测掩码的变换器。 num_multimask_outputs (int): 预测的掩码数量。 activation (nn.Module): 用于上采样掩码的激活函数类型。 iou_head_depth (int): 用于预测掩码质量的MLP深度。 iou_head_hidden_dim (int): 用于预测掩码质量的MLP隐藏维度。 super().__init__() self.transformer_dim transformer_dim self.transformer transformer self.num_multimask_outputs num_multimask_outputs # IoU token和掩码token的嵌入 self.iou_token nn.Embedding(1, transformer_dim) self.mask_tokens nn.Embedding(num_multimask_outputs 1, transformer_dim) # 输出上采样网络 self.output_upscaling nn.Sequential( nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size2, stride2), LayerNorm2d(transformer_dim // 4), activation(), nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size2, stride2), activation(), ) # 生成掩码的超网络MLP self.output_hypernetworks_mlps nn.ModuleList( [MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for _ in range(num_multimask_outputs 1)] ) # 预测掩码质量的MLP self.iou_prediction_head MLP(transformer_dim, iou_head_hidden_dim, num_multimask_outputs 1, iou_head_depth) def forward(self, image_embeddings: torch.Tensor, image_pe: torch.Tensor, sparse_prompt_embeddings: torch.Tensor, dense_prompt_embeddings: torch.Tensor, multimask_output: bool) - Tuple[torch.Tensor, torch.Tensor]: 根据图像和提示嵌入预测掩码。 Args: image_embeddings (torch.Tensor): 图像编码器的嵌入。 image_pe (torch.Tensor): 图像嵌入的位置信息。 sparse_prompt_embeddings (torch.Tensor): 稀疏提示的嵌入。 dense_prompt_embeddings (torch.Tensor): 密集提示的嵌入。 multimask_output (bool): 是否返回多个掩码。 Returns: torch.Tensor: 预测的掩码。 torch.Tensor: 掩码质量的预测。 # 预测掩码和IoU评分 masks, iou_pred self.predict_masks(image_embeddings, image_pe, sparse_prompt_embeddings, dense_prompt_embeddings) # 根据是否需要多个掩码选择输出 mask_slice slice(1, None) if multimask_output else slice(0, 1) masks masks[:, mask_slice, :, :] iou_pred iou_pred[:, mask_slice] return masks, iou_pred def predict_masks(self, image_embeddings: torch.Tensor, image_pe: torch.Tensor, sparse_prompt_embeddings: torch.Tensor, dense_prompt_embeddings: torch.Tensor) - Tuple[torch.Tensor, torch.Tensor]: 预测掩码。 Args: image_embeddings (torch.Tensor): 图像编码器的嵌入。 image_pe (torch.Tensor): 图像嵌入的位置信息。 sparse_prompt_embeddings (torch.Tensor): 稀疏提示的嵌入。 dense_prompt_embeddings (torch.Tensor): 密集提示的嵌入。 Returns: Tuple[torch.Tensor, torch.Tensor]: 预测的掩码和IoU评分。 # 连接输出tokens output_tokens torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim0) output_tokens output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1) tokens torch.cat((output_tokens, sparse_prompt_embeddings), dim1) # 扩展每个图像的数据以适应每个掩码 src torch.repeat_interleave(image_embeddings, tokens.shape[0], dim0) dense_prompt_embeddings pos_src torch.repeat_interleave(image_pe, tokens.shape[0], dim0) # 运行变换器 hs, src self.transformer(src, pos_src, tokens) iou_token_out hs[:, 0, :] mask_tokens_out hs[:, 1 : (1 self.num_multimask_outputs 1), :] # 上采样掩码嵌入并预测掩码 src src.transpose(1, 2).view(src.shape[0], self.transformer_dim, -1) upscaled_embedding self.output_upscaling(src) hyper_in_list [self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]) for i in range(self.num_multimask_outputs 1)] hyper_in torch.stack(hyper_in_list, dim1) masks (hyper_in upscaled_embedding.view(upscaled_embedding.shape[0], -1)).view(upscaled_embedding.shape[0], -1, int(upscaled_embedding.shape[2]**0.5), int(upscaled_embedding.shape[2]**0.5)) # 生成掩码质量预测 iou_pred self.iou_prediction_head(iou_token_out) return masks, iou_pred class MLP(nn.Module): MLP多层感知器模型用于掩码质量预测。 def __init__(self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int) - None: 初始化MLP模型。 Args: input_dim (int): 输入特征的维度。 hidden_dim (int): 隐藏层的维度。 output_dim (int): 输出层的维度。 num_layers (int): 隐藏层的数量。 super().__init__() self.layers nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] [hidden_dim] * (num_layers - 1), [hidden_dim] * (num_layers - 1) [output_dim])) def forward(self, x): 执行前向传播并应用激活函数。 for i, layer in enumerate(self.layers): x F.relu(layer(x)) if i len(self.layers) - 1 else layer(x) return x代码注释说明MaskDecoder类该类用于生成图像的掩码和质量评分使用变换器架构。__init__方法初始化类的属性包括变换器维度、掩码和IoU token的嵌入、输出上采样网络和掩码质量预测的MLP。forward方法根据输入的图像和提示嵌入预测掩码并根据需要选择返回多个掩码或单个掩码。predict_masks方法实现掩码的具体预测逻辑包括连接tokens、扩展图像数据、运行变换器、上采样掩码嵌入以及生成掩码质量预测。MLP类定义一个多层感知器用于掩码质量的预测包含前向传播的实现。这个程序文件定义了一个名为MaskDecoder的类主要用于生成图像的掩膜及其相关的质量评分。该类使用了变换器transformer架构来预测掩膜输入包括图像和提示嵌入。程序中还定义了一个辅助的多层感知器MLP类用于处理一些特定的计算。在MaskDecoder类的构造函数中初始化了一些重要的属性包括变换器的维度、变换器模块、要预测的掩膜数量、IoUIntersection over Union标记的嵌入、掩膜标记的嵌入以及用于输出上采样的神经网络序列。输出上采样的过程使用了转置卷积层和层归一化并结合了激活函数。forward方法是该类的主要接口接受图像嵌入、位置编码、稀疏提示嵌入和密集提示嵌入等参数并返回预测的掩膜和掩膜质量评分。该方法首先调用predict_masks方法来生成掩膜和质量评分然后根据是否需要多掩膜输出来选择合适的掩膜进行返回。predict_masks方法具体实现了掩膜的预测过程。它首先将 IoU 标记和掩膜标记的嵌入进行拼接并扩展为每个图像的掩膜数据。接着将图像嵌入与密集提示嵌入相加并通过变换器进行处理。变换器的输出用于生成掩膜的嵌入并通过上采样网络进行处理最终得到预测的掩膜。与此同时IoU 标记的输出被送入 MLP 以生成掩膜质量的预测。MLP类则是一个简单的多层感知器实现支持多层结构和可选的 Sigmoid 激活函数。它的构造函数接受输入维度、隐藏层维度、输出维度和层数等参数并根据这些参数构建相应的线性层。forward方法则实现了前向传播的过程逐层通过激活函数处理输入数据。整体来看这个程序文件实现了一个基于变换器的掩膜解码器能够根据输入的图像和提示信息生成相应的掩膜及其质量评分适用于图像分割等任务。python class AutoBackend(nn.Module): 处理 Ultralytics YOLO 模型的动态后端选择用于推理。 该类提供了一个抽象层支持多种模型格式和推理引擎。 torch.no_grad() def __init__(self, weightsyolov8n.pt, devicetorch.device(cpu), fp16False, fuseTrue, verboseTrue): 初始化 AutoBackend 以进行推理。 参数: weights (str): 模型权重文件的路径默认为 yolov8n.pt。 device (torch.device): 运行模型的设备默认为 CPU。 fp16 (bool): 启用半精度推理仅在特定后端支持。默认为 False。 fuse (bool): 融合 Conv2D BatchNorm 层以优化性能。默认为 True。 verbose (bool): 启用详细日志记录。默认为 True。 super().__init__() w str(weights[0] if isinstance(weights, list) else weights) # 确保权重路径为字符串 pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, ncnn, triton self._model_type(w) # 设置设备 cuda torch.cuda.is_available() and device.type ! cpu # 检查是否可用 CUDA if cuda and not any([pt, jit, engine, onnx]): # 如果没有使用的模型格式强制使用 CPU device torch.device(cpu) cuda False # 加载模型 if pt: # 如果是 PyTorch 模型 from ultralytics.nn.tasks import attempt_load_weights model attempt_load_weights(weights if isinstance(weights, list) else w, devicedevice, inplaceTrue, fusefuse) elif onnx: # 如果是 ONNX 模型 import onnxruntime session onnxruntime.InferenceSession(w) # 创建 ONNX 推理会话 # 其他模型格式的加载逻辑省略... # 检查类名 if names not in locals(): # 如果类名缺失 names default_class_names(data) # 使用默认类名 names check_class_names(names) # 检查类名的有效性 # 禁用梯度 if pt: for p in model.parameters(): p.requires_grad False # 不需要计算梯度 self.__dict__.update(locals()) # 将所有局部变量赋值给实例 def forward(self, im, augmentFalse, visualizeFalse, embedNone): 在 YOLOv8 MultiBackend 模型上运行推理。 参数: im (torch.Tensor): 要进行推理的图像张量。 augment (bool): 是否在推理期间执行数据增强默认为 False。 visualize (bool): 是否可视化输出预测默认为 False。 embed (list, optional): 要返回的特征向量/嵌入的列表。 返回: (tuple): 包含原始输出张量和可视化处理输出的元组如果 visualizeTrue。 b, ch, h, w im.shape # 获取输入图像的形状 if self.fp16 and im.dtype ! torch.float16: im im.half() # 转换为 FP16 # 根据模型类型执行推理 if self.pt: # PyTorch y self.model(im, augmentaugment, visualizevisualize, embedembed) elif self.onnx: # ONNX Runtime im im.cpu().numpy() # 转换为 numpy 数组 y self.session.run(self.output_names, {self.session.get_inputs()[0].name: im}) # 其他模型推理逻辑省略... return self.from_numpy(y) # 将输出转换为张量并返回 def from_numpy(self, x): 将 numpy 数组转换为张量。 参数: x (np.ndarray): 要转换的数组。 返回: (torch.Tensor): 转换后的张量。 return torch.tensor(x).to(self.device) if isinstance(x, np.ndarray) else x staticmethod def _model_type(ppath/to/model.pt): 根据模型文件路径返回模型类型。 参数: p: 模型文件的路径默认为 path/to/model.pt。 # 返回模型类型 from ultralytics.engine.exporter import export_formats sf list(export_formats().Suffix) # 获取支持的后缀 name Path(p).name types [s in name for s in sf] # 检查文件名中是否包含支持的后缀 return types # 返回模型类型列表代码核心部分说明AutoBackend 类该类负责处理不同模型格式的加载和推理支持多种后端。init方法初始化模型加载权重并设置设备和其他参数。forward 方法执行推理处理输入图像并根据模型类型返回输出。from_numpy 方法将 numpy 数组转换为 PyTorch 张量。_model_type 方法根据模型文件路径返回模型类型用于确定如何加载模型。这些部分是实现 YOLO 模型推理的核心逻辑确保了模型的灵活性和可扩展性。这个程序文件ultralytics/nn/autobackend.py是 Ultralytics YOLO 模型的一个重要组成部分主要负责动态选择后端以运行推理。它支持多种模型格式包括 PyTorch、ONNX、TensorFlow 等并提供了相应的接口来加载和推理这些模型。文件开头导入了一些必要的库包括标准库和第三方库如torch、cv2和numpy这些库为模型的加载和推理提供了基础功能。接着定义了一些辅助函数例如check_class_names和default_class_names用于检查和处理类别名称确保它们符合模型的要求。AutoBackend类是文件的核心部分继承自torch.nn.Module。它的构造函数接受多个参数包括模型权重文件的路径、设备类型CPU 或 GPU、是否使用 DNN 模块进行推理、数据文件路径、是否启用半精度推理等。构造函数首先确定模型的类型然后根据模型类型加载相应的模型并处理模型的元数据。在模型加载过程中AutoBackend支持多种格式的模型包括 PyTorch、TorchScript、ONNX、OpenVINO、TensorRT、CoreML 等。根据不同的模型格式使用不同的库和方法进行加载。例如对于 PyTorch 模型使用attempt_load_weights函数加载权重对于 ONNX 模型使用onnxruntime进行推理对于 TensorRT 模型使用tensorrt库。forward方法是模型推理的主要逻辑接受一个图像张量作为输入并根据模型类型执行推理。该方法处理输入数据的格式转换并调用相应的推理方法。最终返回推理结果可能包括原始输出和可视化输出。此外warmup方法用于预热模型通过运行一次前向推理来提高后续推理的速度。_model_type静态方法用于根据模型文件路径确定模型的类型确保支持的格式可以被正确识别。总的来说这个文件实现了一个灵活的后端选择机制使得用户可以方便地在不同的硬件和软件环境中运行 YOLO 模型同时支持多种模型格式的加载和推理。python import os import time import cv2 import pandas as pd from PIL import Image def save_chinese_image(file_path, image_array): 保存带有中文路径的图片文件 参数 file_path (str): 图片的保存路径应包含中文字符, 例如 示例路径/含有中文的文件名.png image_array (numpy.ndarray): 要保存的 OpenCV 图像即 numpy 数组 try: # 将 OpenCV 图片转换为 Pillow Image 对象 image Image.fromarray(cv2.cvtColor(image_array, cv2.COLOR_BGR2RGB)) # 使用 Pillow 保存图片文件 image.save(file_path) print(f成功保存图像到: {file_path}) except Exception as e: print(f保存图像失败: {str(e)}) class ResultLogger: def __init__(self): 初始化ResultLogger类。 # 创建一个空的DataFrame用于存储识别结果 self.results_df pd.DataFrame(columns[识别结果, 位置, 面积, 时间]) def concat_results(self, result, location, confidence, time): 将检测结果添加到结果DataFrame中。 参数 result (str): 检测结果。 location (str): 检测位置。 confidence (str): 置信度。 time (str): 检出目标所在时间。 返回 pd.DataFrame: 更新后的DataFrame。 # 创建一个包含这些信息的字典 result_data { 识别结果: [result], 位置: [location], 面积: [confidence], 时间: [time] } # 创建一个新的DataFrame并将其添加到实例的DataFrame new_row pd.DataFrame(result_data) self.results_df pd.concat([self.results_df, new_row], ignore_indexTrue) return self.results_df class LogTable: def __init__(self, csv_file_pathNone): 初始化类实例。 参数 csv_file_path (str): 保存初始数据的CSV文件路径。 self.csv_file_path csv_file_path # 初始化用于保存图像和结果的列表 self.saved_images [] self.saved_results [] # 定义DataFrame的列名 columns [文件路径, 识别结果, 位置, 面积, 时间] # 尝试从CSV文件加载数据如果失败则创建一个空的DataFrame try: if not os.path.exists(csv_file_path): # 如果文件不存在创建一个带有初始表头的空DataFrame并保存为CSV文件 empty_df pd.DataFrame(columnscolumns) empty_df.to_csv(csv_file_path, indexFalse, headerTrue) self.data pd.DataFrame(columnscolumns) except (FileNotFoundError, pd.errors.EmptyDataError): self.data pd.DataFrame(columnscolumns) def add_log_entry(self, file_path, recognition_result, position, confidence, time_spent): 向日志中添加一条新记录。 参数 file_path (str): 文件路径 recognition_result (str): 识别结果 position (str): 位置 confidence (float): 置信度 time_spent (float): 用时通常是秒或毫秒 返回 None # 创建新的数据行 new_entry pd.DataFrame([[file_path, recognition_result, position, confidence, time_spent]], columns[文件路径, 识别结果, 位置, 面积, 时间]) # 将新行添加到DataFrame中 self.data pd.concat([new_entry, self.data]).reset_index(dropTrue) def save_to_csv(self): 将更新后的DataFrame保存到CSV文件。 self.data.to_csv(self.csv_file_path, indexFalse, encodingutf-8, modea, headerFalse) def update_table(self, log_table_placeholder): 更新表格显示最新的500条记录。 参数 log_table_placeholder: Streamlit的表格占位符 返回 None # 判断DataFrame的长度是否超过500 if len(self.data) 500: # 如果超过500仅显示最新的500条记录 display_data self.data.head(500) else: # 如果不超过显示全部数据 display_data self.data log_table_placeholder.table(display_data)代码核心部分解释保存带有中文路径的图片save_chinese_image函数用于将图像保存到指定路径支持中文路径。结果记录器ResultLogger类用于记录识别结果包括识别结果、位置、面积和时间。日志表LogTable类用于管理日志数据包括从CSV文件加载数据、添加新记录、保存到CSV文件以及更新显示的表格。这些核心部分实现了图像保存和结果记录的基本功能适用于需要处理图像和记录结果的应用场景。这个程序文件log.py主要用于处理图像和日志记录特别是在图像识别或检测任务中。程序中使用了多个库包括os、time、cv2OpenCV、pandas、PILPillow、numpy和datetime这些库为图像处理和数据管理提供了强大的支持。首先程序定义了一个save_chinese_image函数用于保存带有中文路径的图像文件。该函数接受两个参数文件路径和图像数组。它尝试将 OpenCV 格式的图像转换为 Pillow 图像对象然后使用 Pillow 保存图像。如果保存成功会打印成功信息如果失败则会捕获异常并打印错误信息。接下来定义了一个ResultLogger类。该类的初始化方法创建了一个空的 Pandas DataFrame用于存储识别结果、位置、面积和时间等信息。concat_results方法用于将检测结果添加到 DataFrame 中接收检测结果、位置、置信度和时间作为参数并将这些信息存储为新的行。然后是LogTable类它用于管理日志数据和图像帧。初始化时它尝试从指定的 CSV 文件加载数据如果文件不存在则创建一个空的 DataFrame。该类包含多个方法包括add_frames添加图像和检测信息、clear_frames清空存储的图像和结果、save_frames_file保存图像或视频文件、add_log_entry向日志中添加新记录、clear_data清空数据、save_to_csv将数据保存到 CSV 文件和update_table更新表格以显示最新的记录。在save_frames_file方法中如果保存的图像列表不为空则根据图像数量决定是保存为单张图片还是视频。如果只有一张图像则保存为 PNG 格式如果有多张图像则将它们合成为 AVI 格式的视频。该方法还会生成带有时间戳的文件名确保文件的唯一性。add_log_entry方法用于向日志中添加一条新记录包括文件路径、识别结果、位置、置信度和时间。每次调用该方法时都会将新记录添加到 DataFrame 的顶部。最后update_table方法用于更新表格显示最多显示最新的 500 条记录适用于与 Streamlit 等可视化工具结合使用。总体而言这个程序文件提供了一整套用于图像处理和结果记录的功能适合在图像识别或监控系统中使用。python import time from threading import Thread import streamlit as st from ultralytics import Explorer def _get_explorer(): 初始化并返回Explorer类的实例。 # 从session_state中获取数据集和模型 exp Explorer(datast.session_state.get(dataset), modelst.session_state.get(model)) # 创建一个线程来生成嵌入表 thread Thread( targetexp.create_embeddings_table, kwargs{force: st.session_state.get(force_recreate_embeddings)} ) thread.start() # 启动线程 # 创建进度条以显示嵌入表创建的进度 progress_bar st.progress(0, textCreating embeddings table...) while exp.progress 1: # 当进度小于1时持续更新进度条 time.sleep(0.1) # 每0.1秒检查一次进度 progress_bar.progress(exp.progress, textfProgress: {exp.progress * 100}%) # 更新进度条 thread.join() # 等待线程完成 st.session_state[explorer] exp # 将生成的Explorer实例存入session_state progress_bar.empty() # 清空进度条 def init_explorer_form(): 初始化Explorer实例并创建嵌入表同时跟踪进度。 # 获取数据集的路径 datasets ROOT / cfg / datasets ds [d.name for d in datasets.glob(*.yaml)] # 获取所有数据集文件名 models [ yolov8n.pt, yolov8s.pt, yolov8m.pt, yolov8l.pt, yolov8x.pt, yolov8n-seg.pt, yolov8s-seg.pt, yolov8m-seg.pt, yolov8l-seg.pt, yolov8x-seg.pt, yolov8n-pose.pt, yolov8s-pose.pt, yolov8m-pose.pt, yolov8l-pose.pt, yolov8x-pose.pt, ] # 创建一个表单用于选择数据集和模型 with st.form(keyexplorer_init_form): col1, col2 st.columns(2) # 创建两列布局 with col1: st.selectbox(Select dataset, ds, keydataset, indexds.index(coco128.yaml)) # 选择数据集 with col2: st.selectbox(Select model, models, keymodel) # 选择模型 st.checkbox(Force recreate embeddings, keyforce_recreate_embeddings) # 选择是否强制重新创建嵌入 # 提交按钮点击后调用_get_explorer函数 st.form_submit_button(Explore, on_click_get_explorer) def layout(): 设置页面布局并提供文档链接。 st.set_page_config(layoutwide, initial_sidebar_statecollapsed) # 设置页面配置 st.markdown(h1 styletext-align: center;Ultralytics Explorer Demo/h1, unsafe_allow_htmlTrue) # 页面标题 # 如果session_state中的explorer为空则初始化表单 if st.session_state.get(explorer) is None: init_explorer_form() return # 如果explorer已存在显示返回按钮 st.button(:arrow_backward: Select Dataset, on_clickreset_explorer) exp st.session_state.get(explorer) # 获取当前的Explorer实例 # 其他代码省略... if __name__ __main__: layout() # 运行布局函数代码说明_get_explorer(): 该函数负责初始化Explorer类的实例并在后台线程中创建嵌入表同时更新进度条以反馈用户进度。init_explorer_form(): 该函数用于创建一个表单允许用户选择数据集和模型并提供一个按钮来提交选择以初始化Explorer。layout(): 该函数设置页面的整体布局并根据session_state的状态决定是否显示初始化表单或其他内容。以上是代码的核心部分和注释提供了对主要功能的清晰理解。这个程序文件是一个基于Streamlit框架的用户界面用于展示和操作Ultralytics YOLO模型的Explorer功能。程序的主要功能是让用户选择数据集和模型并通过图形界面进行图像查询和相似图像搜索。首先程序导入了一些必要的库包括时间处理、线程处理、数据处理pandas、Ultralytics的Explorer类以及Streamlit库。它还检查了所需的库是否已安装确保环境的正确性。接下来定义了一个名为_get_explorer的函数该函数初始化Explorer实例并在一个新线程中创建嵌入表。这个过程会显示一个进度条直到嵌入表创建完成。创建完成后Explorer实例被存储在会话状态中以便后续使用。init_explorer_form函数用于初始化Explorer的表单用户可以在这里选择数据集和模型并选择是否强制重新创建嵌入。可用的数据集和模型通过文件系统和预定义的模型列表获取。程序还定义了多个表单函数包括query_form和ai_query_form用于用户输入SQL查询和AI查询。用户可以输入查询条件并通过按钮提交查询查询结果会被存储在会话状态中。find_similar_imgs函数用于根据用户选择的图像查找相似图像。相似图像的结果会被存储在会话状态中以便后续展示。similarity_form函数则是一个表单用于设置相似图像查询的参数包括限制返回的图像数量。用户必须选择至少一张图像才能进行搜索。此外程序还包含了run_sql_query和run_ai_query函数分别用于执行SQL查询和AI查询并将结果更新到会话状态中。reset_explorer函数用于重置Explorer的状态清空会话中的相关变量。在layout函数中程序设置了页面的布局并根据会话状态决定是否显示初始化表单或展示查询结果。用户可以在这里选择数据集、输入查询、查看结果以及进行相似图像搜索。最后程序的入口点是if __name__ __main__:调用layout函数启动整个应用。这个程序的设计使得用户能够方便地与YOLO模型进行交互进行数据探索和图像分析。python import os import torch import yaml from ultralytics import YOLO # 导入YOLO模型 # 确定使用的设备优先使用GPU device 0 if torch.cuda.is_available() else cpu if __name__ __main__: # 确保该模块被直接运行时才执行以下代码 workers 1 # 设置数据加载的工作进程数 batch 2 # 设置每个批次的大小 data_name data # 数据集名称 # 获取数据集yaml文件的绝对路径 data_path abs_path(fdatasets/{data_name}/{data_name}.yaml, path_typecurrent) unix_style_path data_path.replace(os.sep, /) # 将路径转换为Unix风格 # 获取数据集所在目录的路径 directory_path os.path.dirname(unix_style_path) # 读取YAML文件保持原有顺序 with open(data_path, r) as file: data yaml.load(file, Loaderyaml.FullLoader) # 如果YAML文件中包含path项则修改为当前目录路径 if path in data: data[path] directory_path # 将修改后的数据写回YAML文件 with open(data_path, w) as file: yaml.safe_dump(data, file, sort_keysFalse) # 加载YOLOv8模型指定模型配置文件和任务类型 model YOLO(model./ultralytics/cfg/models/v8/yolov8s.yaml, taskdetect) # 开始训练模型 results2 model.train( datadata_path, # 指定训练数据的配置文件路径 devicedevice, # 指定训练使用的设备 workersworkers, # 指定数据加载的工作进程数 imgsz640, # 指定输入图像的大小为640x640 epochs100, # 指定训练的轮数为100 batchbatch, # 指定每个批次的大小 nametrain_v8_ data_name # 指定训练任务的名称 )代码注释说明导入库导入必要的库包括操作系统、PyTorch、YAML解析和YOLO模型。设备选择根据是否有可用的GPU选择设备。主程序入口使用if __name__ __main__:确保代码块只在直接运行时执行。参数设置设置数据加载的工作进程数和批次大小。数据集路径获取数据集的YAML配置文件的绝对路径并转换为Unix风格路径。读取和修改YAML文件读取YAML文件修改其中的path项为当前目录路径并将修改后的内容写回文件。模型加载加载YOLOv8模型指定模型配置文件和任务类型目标检测。模型训练调用模型的训练方法传入训练数据路径、设备、工作进程数、图像大小、训练轮数、批次大小和任务名称等参数。这个程序文件train.py是用于训练 YOLOv8 模型的 Python 脚本。首先它导入了必要的库包括os、torch、yaml和ultralytics中的 YOLO 模型。程序会根据系统是否支持 CUDA 来选择设备如果支持则使用 GPU设备编号为 “0”否则使用 CPU。在if __name__ __main__:语句下程序确保只有在直接运行该脚本时才会执行以下代码。接下来设置了一些训练参数包括工作进程数量workers和批次大小batch。数据集的名称被设置为 “data”并通过abs_path函数获取数据集 YAML 文件的绝对路径。程序读取 YAML 文件的内容并保持原有的顺序。它会检查 YAML 文件中是否包含path项如果有则将其修改为数据集所在目录的路径并将修改后的内容写回到 YAML 文件中。这一步是为了确保数据集路径的正确性。接下来程序加载了预训练的 YOLOv8 模型指定了模型的配置文件路径和任务类型为检测taskdetect。然后调用model.train()方法开始训练模型。在训练过程中指定了多个参数包括训练数据的配置文件路径、设备、工作进程数量、输入图像的大小640x640、训练的 epoch 数量100以及每个批次的大小2。最后训练任务的名称被设置为train_v8_加上数据集名称。总的来说这个脚本的主要功能是准备数据集、加载 YOLOv8 模型并启动训练过程。五、源码文件六、源码获取欢迎大家点赞、收藏、关注、评论啦 、查看获取联系方式
版权声明:本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

龙岩公司做网站wordpress免费相册

颠覆传统!这款SQLite在线工具让数据库管理变得如此简单高效 【免费下载链接】sqlite-viewer View SQLite file online 项目地址: https://gitcode.com/gh_mirrors/sq/sqlite-viewer 还在为繁琐的数据库安装程序而烦恼吗?每次需要查看SQLite文件都…

张小明 2026/1/2 19:17:19 网站建设

软装设计师常用网站国外网站前台模板

Spring Boot 钩子全集实战(二):SpringApplicationRunListener.starting() 详解 在上一篇中,我们介绍了如何通过 addInitializers、addListeners 等方式在启动前注入逻辑。今天,我们将聚焦于 Spring Boot 启动流程中最早…

张小明 2026/1/2 19:17:51 网站建设

建设论坛网站大全桂林市市长

温馨提示:文末有资源获取方式自动化数据归集:无论是线上广告带来的线索、线下活动的签到用户,还是公众号菜单栏里的服务预约,所有渠道来的客户信息,都通过统一的表单入口,自动汇入系统后台的标准化数据库。…

张小明 2026/1/1 15:56:16 网站建设

餐饮网站建设案例成都营销型网站

AMD Ryzen处理器终极调优完整指南:用RyzenAdj释放隐藏性能 【免费下载链接】RyzenAdj Adjust power management settings for Ryzen APUs 项目地址: https://gitcode.com/gh_mirrors/ry/RyzenAdj 你是不是经常觉得自己的AMD Ryzen笔记本性能没有完全发挥&…

张小明 2026/1/1 15:54:15 网站建设

网站团购活动页面怎么做石家庄企业展厅设计公司

用自然常数 eee 丈量时间与风险 ——从丙烷罐泄漏看连续时间下的概率预测摘要: 在工程与生活中,我们常被问到:“如果这件事每年发生的概率是 5%,那么 10 年后它发生的概率是多少?”直觉告诉我们是 50%,但数…

张小明 2026/1/1 15:52:13 网站建设

网站建设架构书校园网站建设整改建议

COMSOL含裂缝地层流动和传热耦合,油藏数值模拟,COMSOL裂缝流动,包含注入井与生产井,考虑裂缝交叉。裂缝性地层的渗流问题总能让人血压拉满——注入井和生产井之间那些歪七扭八的裂缝网络,活像被熊孩子扯烂的蜘蛛网。最…

张小明 2026/1/1 15:50:11 网站建设