mysql做网站怎么查看数据库wap手机网站建设方案

张小明 2026/1/9 21:14:24
mysql做网站怎么查看数据库,wap手机网站建设方案,湘潭做网站问下磐石网络,做英文网站要做适合已经的一、项目介绍 本文设计并实现了一个基于深度学习目标检测算法YOLOv11的蜜蜂识别与检测系统。该系统旨在应对现代农业和生态研究中对于蜜蜂种群进行高效、自动化监测的需求。项目采用了一个大规模、高质量的定制蜜蜂图像数据集#xff0c;该数据集包含总计8078张图像#xff…一、项目介绍本文设计并实现了一个基于深度学习目标检测算法YOLOv11的蜜蜂识别与检测系统。该系统旨在应对现代农业和生态研究中对于蜜蜂种群进行高效、自动化监测的需求。项目采用了一个大规模、高质量的定制蜜蜂图像数据集该数据集包含总计8078张图像其中训练集5640张、验证集1604张、测试集836张所有图像均精细标注仅包含‘bees’一个类别nc: 1确保了模型训练的专注度和准确性。系统核心采用最新的YOLOv11算法进行模型训练与优化该算法在速度和精度上相比前代版本有显著提升能够实现对图像和视频流中蜜蜂目标的快速、精准定位与识别。为进一步提升实用性本项目还开发了一个完整的用户交互界面UI集成了用户登录注册、图像/视频上传、实时检测。实验结果表明本系统在测试集上达到了较高的平均精度mAP88.7%能够有效克服复杂自然场景下的光照变化、遮挡及背景干扰等挑战为研究人员和养蜂人提供了一个可靠、易用的自动化蜜蜂监测工具。本项目提供了完整的Python项目源码、预训练模型及部署方案具备良好的可扩展性和工程应用价值。目录一、项目介绍二、项目功能展示2.1 用户登录系统2.2 检测功能2.3 检测结果显示2.4 参数配置2.5 其他功能3. 技术特点4. 系统流程三、数据集介绍数据集配置文件四、项目环境配置创建虚拟环境安装所需要库五、模型训练训练代码训练结果六、核心代码登录注册验证 多重检测模式️ 沉浸式可视化⚙️ 参数配置系统✨ UI美学设计 智能工作流七、项目源码视频简介基于深度学习YOLOv11的蜜蜂识别检测系统YOLOv11YOLO数据集UI界面登录注册界面Python项目源码模型_哔哩哔哩_bilibili基于深度学习YOLOv11的蜜蜂识别检测系统YOLOv11YOLO数据集UI界面登录注册界面Python项目源码模型二、项目功能展示✅ 用户登录注册支持密码检测和安全性验证。✅ 三种检测模式基于YOLOv11模型支持图片、视频和实时摄像头三种检测精准识别目标。✅ 双画面对比同屏显示原始画面与检测结果。✅ 数据可视化实时表格展示检测目标的类别、置信度及坐标。✅智能参数调节提供置信度滑块动态优化检测精度适应不同场景需求。✅科幻风交互界面深色主题搭配动态光效减少视觉疲劳提升操作体验。✅多线程高性能架构独立检测线程保障流畅运行实时状态提示响应迅速无卡顿。2.1 用户登录系统提供用户登录和注册功能用户名和密码验证账户信息本地存储(accounts.json)密码长度至少6位的安全要求2.2 检测功能图片检测支持JPG/JPEG/PNG/BMP格式图片的火焰烟雾检测视频检测支持MP4/AVI/MOV格式视频的逐帧检测摄像头检测实时摄像头流检测(默认摄像头0)检测结果保存到results目录2.3 检测结果显示显示原始图像和检测结果图像检测结果表格展示包含检测到的类别置信度分数物体位置坐标(x,y)、2.4 参数配置模型选择置信度阈值调节(0-1.0)IoU(交并比)阈值调节(0-1.0)实时同步滑块和数值输入框2.5 其他功能检测结果保存功能视频检测时自动保存结果视频状态栏显示系统状态和最后更新时间无边框窗口设计可拖动和调整大小3. 技术特点采用多线程处理检测任务避免界面卡顿精美的UI设计具有科技感的视觉效果发光边框和按钮悬停和按下状态效果自定义滑块、表格和下拉框样式检测结果保存机制响应式布局适应不同窗口大小4. 系统流程用户登录/注册选择检测模式(图片/视频/摄像头)调整检测参数(可选)开始检测并查看结果可选择保存检测结果停止检测或切换其他模式三、数据集介绍目标类别本数据集为单类别检测数据集所有标注对象均为蜜蜂bees。类别标签names: [bees]类别数量nc: 1。这种单一性使得模型能够集中学习蜜蜂的精准特征避免多类别间的干扰。数据总量数据集图像总量为8,080张。训练集5,640 张图像验证集1,604 张图像测试集836 张图像数据集配置文件数据集采用标准化YOLO格式组织train: F:\蜜蜂识别检测数据集\train\images val: F:\蜜蜂识别检测数据集\valid\images test: F:\蜜蜂识别检测数据集\test\images nc: 1 names: [bees]四、项目环境配置创建虚拟环境首先新建一个Anaconda环境每个项目用不同的环境这样项目中所用的依赖包互不干扰。终端输入conda create -n yolov11 python3.9激活虚拟环境conda activate yolov11安装cpu版本pytorchpip install torch torchvision torchaudio安装所需要库pip install -r requirements.txtpycharm中配置anaconda五、模型训练训练代码from ultralytics import YOLO model_path yolo11s.pt data_path data.yaml if __name__ __main__: model YOLO(model_path) results model.train(datadata_path, epochs100, batch8, device0, workers0, projectruns, nameexp, )根据实际情况更换模型 # yolov11n.yaml (nano)轻量化模型适合嵌入式设备速度快但精度略低。 # yolov11s.yaml (small)小模型适合实时任务。 # yolov11m.yaml (medium)中等大小模型兼顾速度和精度。 # yolov11b.yaml (base)基本版模型适合大部分应用场景。 # yolov11l.yaml (large)大型模型适合对精度要求高的任务。--batch 8每批次8张图像。--epochs 100训练100轮。--datasets/data.yaml数据集配置文件。--weights yolov11s.pt初始化模型权重yolov11s.pt是预训练的轻量级YOLO模型。训练结果六、核心代码import sys import cv2 import numpy as np from PyQt5.QtWidgets import QApplication, QMessageBox, QFileDialog from PyQt5.QtCore import QThread, pyqtSignal from ultralytics import YOLO from UiMain import UiMainWindow import time import os from PyQt5.QtWidgets import QDialog from LoginWindow import LoginWindow class DetectionThread(QThread): frame_received pyqtSignal(np.ndarray, np.ndarray, list) # 原始帧, 检测帧, 检测结果 finished_signal pyqtSignal() # 线程完成信号 def __init__(self, model, source, conf, iou, parentNone): super().__init__(parent) self.model model self.source source self.conf conf self.iou iou self.running True def run(self): try: if isinstance(self.source, int) or self.source.endswith((.mp4, .avi, .mov)): # 视频或摄像头 cap cv2.VideoCapture(self.source) while self.running and cap.isOpened(): ret, frame cap.read() if not ret: break # 保存原始帧 original_frame frame.copy() # 检测 results self.model(frame, confself.conf, iouself.iou) annotated_frame results[0].plot() # 提取检测结果 detections [] for result in results: for box in result.boxes: class_id int(box.cls) class_name self.model.names[class_id] confidence float(box.conf) x, y, w, h box.xywh[0].tolist() detections.append((class_name, confidence, x, y)) # 发送信号 self.frame_received.emit( cv2.cvtColor(original_frame, cv2.COLOR_BGR2RGB), cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB), detections ) # 控制帧率 time.sleep(0.03) # 约30fps cap.release() else: # 图片 frame cv2.imread(self.source) if frame is not None: original_frame frame.copy() results self.model(frame, confself.conf, iouself.iou) annotated_frame results[0].plot() # 提取检测结果 detections [] for result in results: for box in result.boxes: class_id int(box.cls) class_name self.model.names[class_id] confidence float(box.conf) x, y, w, h box.xywh[0].tolist() detections.append((class_name, confidence, x, y)) self.frame_received.emit( cv2.cvtColor(original_frame, cv2.COLOR_BGR2RGB), cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB), detections ) except Exception as e: print(fDetection error: {e}) finally: self.finished_signal.emit() def stop(self): self.running False class MainWindow(UiMainWindow): def __init__(self): super().__init__() # 初始化模型 self.model None self.detection_thread None self.current_image None self.current_result None self.video_writer None self.is_camera_running False self.is_video_running False self.last_detection_result None # 新增保存最后一次检测结果 # 连接按钮信号 self.image_btn.clicked.connect(self.detect_image) self.video_btn.clicked.connect(self.detect_video) self.camera_btn.clicked.connect(self.detect_camera) self.stop_btn.clicked.connect(self.stop_detection) self.save_btn.clicked.connect(self.save_result) # 初始化模型 self.load_model() def load_model(self): try: model_name self.model_combo.currentText() self.model YOLO(f{model_name}.pt) # 自动下载或加载本地模型 self.update_status(f模型 {model_name} 加载成功) except Exception as e: QMessageBox.critical(self, 错误, f模型加载失败: {str(e)}) self.update_status(模型加载失败) def detect_image(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, 警告, 请先停止当前检测任务) return file_path, _ QFileDialog.getOpenFileName( self, 选择图片, , 图片文件 (*.jpg *.jpeg *.png *.bmp)) if file_path: self.clear_results() self.current_image cv2.imread(file_path) self.current_image cv2.cvtColor(self.current_image, cv2.COLOR_BGR2RGB) self.display_image(self.original_image_label, self.current_image) # 创建检测线程 conf self.confidence_spinbox.value() iou self.iou_spinbox.value() self.detection_thread DetectionThread(self.model, file_path, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status(f正在检测图片: {os.path.basename(file_path)}) def detect_video(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, 警告, 请先停止当前检测任务) return file_path, _ QFileDialog.getOpenFileName( self, 选择视频, , 视频文件 (*.mp4 *.avi *.mov)) if file_path: self.clear_results() self.is_video_running True # 初始化视频写入器 cap cv2.VideoCapture(file_path) frame_width int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps cap.get(cv2.CAP_PROP_FPS) cap.release() # 创建保存路径 save_dir results os.makedirs(save_dir, exist_okTrue) timestamp time.strftime(%Y%m%d_%H%M%S) save_path os.path.join(save_dir, fresult_{timestamp}.mp4) fourcc cv2.VideoWriter_fourcc(*mp4v) self.video_writer cv2.VideoWriter(save_path, fourcc, fps, (frame_width, frame_height)) # 创建检测线程 conf self.confidence_spinbox.value() iou self.iou_spinbox.value() self.detection_thread DetectionThread(self.model, file_path, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status(f正在检测视频: {os.path.basename(file_path)}) def detect_camera(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, 警告, 请先停止当前检测任务) return self.clear_results() self.is_camera_running True # 创建检测线程 (默认使用摄像头0) conf self.confidence_spinbox.value() iou self.iou_spinbox.value() self.detection_thread DetectionThread(self.model, 0, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status(正在从摄像头检测...)登录注册验证对应文件LoginWindow.py# 账户验证核心逻辑 def handle_login(self): username self.username_input.text().strip() password self.password_input.text().strip() if not username or not password: QMessageBox.warning(self, 警告, 用户名和密码不能为空) return if username in self.accounts and self.accounts[username] password: self.accept() # 验证通过 else: QMessageBox.warning(self, 错误, 用户名或密码错误) # 密码强度检查注册时 def handle_register(self): if len(password) 6: # 密码长度≥6位 QMessageBox.warning(self, 警告, 密码长度至少为6位)多重检测模式对应文件main.py图片检测def detect_image(self): file_path, _ QFileDialog.getOpenFileName( self, 选择图片, , 图片文件 (*.jpg *.jpeg *.png *.bmp)) if file_path: self.detection_thread DetectionThread(self.model, file_path, conf, iou) self.detection_thread.start() # 启动检测线程视频检测def detect_video(self): file_path, _ QFileDialog.getOpenFileName( self, 选择视频, , 视频文件 (*.mp4 *.avi *.mov)) if file_path: self.video_writer cv2.VideoWriter() # 初始化视频写入器 self.detection_thread DetectionThread(self.model, file_path, conf, iou)实时摄像头def detect_camera(self): self.detection_thread DetectionThread(self.model, 0, conf, iou) # 摄像头设备号0 self.detection_thread.start()️沉浸式可视化对应文件UiMain.py双画面显示def display_image(self, label, image): q_img QImage(image.data, w, h, bytes_per_line, QImage.Format_RGB888) pixmap QPixmap.fromImage(q_img) label.setPixmap(pixmap.scaled(label.size(), Qt.KeepAspectRatio)) # 自适应缩放结果表格def add_detection_result(self, class_name, confidence, x, y): self.results_table.insertRow(row) items [ QTableWidgetItem(class_name), # 类别列 QTableWidgetItem(f{confidence:.2f}), # 置信度 QTableWidgetItem(f{x:.1f}), # X坐标 QTableWidgetItem(f{y:.1f}) # Y坐标 ]⚙️参数配置系统对应文件UiMain.py双阈值联动控制# 置信度阈值同步 def update_confidence(self, value): confidence value / 100.0 self.confidence_spinbox.setValue(confidence) # 滑块→数值框 self.confidence_label.setText(f置信度阈值: {confidence:.2f}) # IoU阈值同步 def update_iou(self, value): iou value / 100.0 self.iou_spinbox.setValue(iou)✨UI美学设计对应文件UiMain.py科幻风格按钮def create_button(self, text, color): return f QPushButton {{ border: 1px solid {color}; color: {color}; border-radius: 6px; }} QPushButton:hover {{ background-color: {self.lighten_color(color, 10)}; box-shadow: 0 0 10px {color}; # 悬停发光效果 }} 动态状态栏def update_status(self, message): self.status_bar.showMessage( f状态: {message} | 最后更新: {time.strftime(%H:%M:%S)} # 实时时间戳 )智能工作流对应文件main.py线程管理class DetectionThread(QThread): frame_received pyqtSignal(np.ndarray, np.ndarray, list) # 信号量通信 def run(self): while self.running: # 多线程检测循环 results self.model(frame, confself.conf, iouself.iou) self.frame_received.emit(original_frame, result_frame, detections)七、项目源码视频简介基于深度学习YOLOv11的蜜蜂识别检测系统YOLOv11YOLO数据集UI界面登录注册界面Python项目源码模型_哔哩哔哩_bilibili基于深度学习YOLOv11的蜜蜂识别检测系统YOLOv11YOLO数据集UI界面登录注册界面Python项目源码模型
版权声明:本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

广西贺州建设局网站网站标签名词

🤯面对琳琅满目的 AI 论文工具,你是不是也挑花了眼?“一键生成论文”“秒过查重” 的宣传满天飞,可真正用起来才发现 —— 要么是假文献堆砌,要么是空图表充数,甚至还会踩学术不端的红线!作为踩…

张小明 2025/12/25 5:46:30 网站建设

做网站代下可玩儿小程序代理

概述 本文提出了自动定理证明(ATP)的新底层模型 Goedel-Prover-V2。 以往的研究需要超大模型(数百个 B 级参数)和庞大的推理计算,这限制了开源模型的性能。 因此,作者引入了一种新颖的学习方法和数据生成策…

张小明 2025/12/24 18:37:30 网站建设

济南历城区网站建设网站首页设计报价多少

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容: 开发一个极简的SQL Server连接测试工具原型。要求:1. 输入服务器地址、用户名和密码;2. 测试连接按钮;3. 显示连接结果和基本信息;4.…

张小明 2025/12/25 11:41:33 网站建设

烟台网站推广优化做网站 人员

1. 改进YOLOv11香烟包装识别与分类_CSP-PTB优化 1.1. 引言 在计算机视觉领域,目标检测技术已经广泛应用于各个行业,特别是在零售、安防和智能制造等领域。香烟包装作为零售商品的重要组成部分,其自动识别与分类对于库存管理、防伪检测和销售…

张小明 2026/1/9 9:50:01 网站建设

网站前端模板下载哈尔滨模板建站公司推荐

📦点击查看-已发布目标检测数据集合集(持续更新) 数据集名称图像数量应用方向博客链接🔌 电网巡检检测数据集1600 张电力设备目标检测点击查看🔥 火焰 / 烟雾 / 人检测数据集10000张安防监控,多目标检测点…

张小明 2025/12/26 7:37:10 网站建设

城市建设理论研究收录网站注册公司法人年龄要求

最近一直在用华子家的FreeBuds SE 4 ANC,发现听歌的时候偶尔会听到沙沙声,一开始还以为是耳机坏了!后来网上查了一下才发现,原来因为耳机的主动降噪技术导致的! - 因为正常主动降噪的原理都是捕捉环境噪音,…

张小明 2026/1/8 17:04:43 网站建设