昆山企业网站制作公司游戏服务器搭建

张小明 2026/1/3 9:23:08
昆山企业网站制作公司,游戏服务器搭建,网络搭建教程,浙江网站开发公司大型语言模型(LLM)存在知识截止、过时信息、幻觉和缺乏隐私信息等局限性。检索增强生成(RAG)通过结合外部知识库可有效减少幻觉#xff0c;但传统RAG主要依赖非结构化数据。知识图谱作为结构化数据存储#xff0c;能整合结构化和非结构化数据#xff0c;为RAG提供丰富上下文…大型语言模型(LLM)存在知识截止、过时信息、幻觉和缺乏隐私信息等局限性。检索增强生成(RAG)通过结合外部知识库可有效减少幻觉但传统RAG主要依赖非结构化数据。知识图谱作为结构化数据存储能整合结构化和非结构化数据为RAG提供丰富上下文显著提升LLM回答的准确性和可靠性尤其在医疗、金融等专业领域。导读1.LLMs简介2.LLMs的局限性2.1.知识截止问题2.2.过时信息2.3.纯粹幻觉2.4.缺乏隐私信息3.克服LLMs的局限性3.1.监督微调(SFT)3.2.检索增强生成4.知识图谱作为RAG应用的数据存储大型语言模型(LLM)在多个领域表现出了令人印象深刻的能力但它们有很大的局限性影响了它们的效用特别是在生成准确和最新的信息时。一种被广泛采用的解决这些局限性的方法是检索增强生成(RAG)这是一种将LLM与外部知识库相结合的工作流通过在运行时从可信来源提取数据来提供准确和当前的响应。 RAG可以显著减少幻觉但不能完全消除幻觉。幻觉是LLM最持久的挑战之一。此外 RAG允许系统将一般知识与可能在模型预训练中无法很好表示的利基、领域特定信息无缝地连接起来。尽管有这些优势RAG实现通常只关注非结构化数据而忽略了知识图谱等结构化源的潜力。知识图谱是实体、属性和关系的结构化表示提供了一个连接结构化和非结构化数据的语义框架。例如客户支持记录是非结构化文本而产品目录或用户数据库是结构化的。连接它们意味着使系统能够将对话中提到的“我最近订购的笔记本电脑”与确切型号、购买日期和保修状态的结构化记录联系起来。知识图谱是RAG的关键组成部分它可以实现准确、丰富且相互关联的信息检索例如将客户对药物相互作用的查询与结构化医疗指南、先前的案例研究联系起来。 以及患者的实时病史。将知识图表集成到RAG管道中可以克服LLM的限制增强数据检索并促进跨医疗保健、金融和技术支持等领域管理和使用不同数据类型的整体方法。本文面向希望构建更强大、更易于解释和更有能力的RAG系统的开发人员、研究人员和数据从业者。您将学习如何用知识图表增强现有的RAG架构以及如何从头开始构建新的Graphrag管道。在此过程中您将获得数据建模、图表构建、检索工作流和系统评估方面的实用技能。并将清楚地了解LLM、RAG和知识图表是如何交叉在一起的以创建能够处理复杂查询并提供准确、可靠和可解释结果的强大系统。LLMS简介到目前为止你可能已经接触或听说过ChatGPT它是对话式人工智能最突出的例子之一。ChatGPT是由OpenAI开发并由LLMS提供支持的对话式用户界面。 例如GPT-4(OpenAI等2024)。LLM基于Transformer架构构建(Vaswani等2017)使它们能够高效地处理和生成文本。这些模型基于大量的文本数据进行训练。 让他们学习模式、语法、语境甚至一定程度的推理。训练过程包括向模型输入包含各种文本的大型数据集主要目的是使模型能够准确预测序列中的下一个单词。这种广泛的接触使模型能够根据从数据中学到的模式理解和生成类似人类的文本。例如 如果你使用“Never Gonna”作为LLM的输入你可能会得到类似于图1所示的响应。图1显示了LLM如何处理输入Never Gonna并生成输出Give You Up。这突出表明了LLM如何依赖其在培训期间学到的模式和关联例如来自常见文化背景(包括流行音乐)的模式和关联。这些响应的质量和相关性在很大程度上取决于培训数据集的多样性和深度这决定了LLM识别和复制此类模式的能力。Figure1 LLMs are trained to predict the next word.图1 LLMs被训练来预测下一个词虽然LLM擅长生成适合上下文的文本但它们不仅仅是自动完成系统。它们遵循指令和适应各种任务的非凡能力令人印象深刻。例如如图2所示您可以让ChatGPT以特定风格生成关于特定主题的俳句(haiku)。这种功能不仅说明了模式识别还说明了对特定任务指令的理解从而实现了创造性和细致入微的输出远远超出了简单的文本预测。Figure2 Writing a haiku with ChatGPT图2 用ChatGPT写俳句LLM能够遵循指令并生成多样化的复杂输出无论是精心制作俳句还是提供结构化的反应这不仅仅是预测序列中的下一个单词。这种理解和执行详细指令的能力使LLM特别适合于各种各样的任务。在本文中 您将使用这种指令跟踪能力来设计和完善RAG管道。通过利用指令跟踪功能您可以更有效地集成检索组件根据特定上下文定制响应并优化系统的准确性和可用性。ChatGPT的常识广度同样显著。例如图3显示了ChatGPT在收到有关首次载人登月的提示时的反应。Figure3 Retrieving factual information from ChatGPT图3 从ChatGPT获取事实信息如果你用来自NASA或维基百科的外部信息来验证这个回答你可以观察到模型产生了一个准确的回答没有错误的信息。这样的回答可能会给你一种印象好像LLM构建了一个庞大的事实数据库它可以在收到提示时从中检索。然而模型并不存储特定的事实事件或来自训练数据集的信息。相反它对所训练的语言进行复杂的数学表示。记住LLM是基于Transformer这是一种基于神经网络的深度学习架构可以预测下一个单词如图4所示。图4显示了一个神经网络它预测序列中的下一个单词类似于LLMS的功能。中心部分显示了由多层神经元组成的网络这些神经元通过代表信息流的线连接在一起。每个连接都有一个权重。 例如示例值0.04它会影响连接的强度。在训练期间模型会学习这些权重的值来改进其预测。当被问及特定的历史事件时LLM不会从其训练数据中回忆起该事件。 它根据神经网络中学习到的权重生成响应类似于预测序列中的下一个单词。因此虽然LLM可以提供看似知识渊博的答案但它们的响应是基于这些学习到的权重而不是显式记忆。引用Andrej Karpathy的话:“我们知道他们(LLM)建立并维护着某种知识数据库但即使是这个知识库也非常奇怪、不完美和怪异” (https://www.youtube.com/watch?vzjkBMFhNj_gat12:40).Figure4 Neural network trained to predict the next word based on the input sequence of words图4 神经网络训练出根据输入词序列预测下一个词LLM的局限性代表了人工智能发展的突破性一步在一系列应用中提供了非凡的能力。然而与任何变革性技术一样它们也不是没有挑战和限制。在这里我们将深入探讨其中的一些局限性及其影响。2.1. 知识截止问题最明显的限制是LLM不知道训练数据集中未包含的事件或信息。此时ChatGPT知道截至2023年10月发生的信息。例如如果你向ChatGPT询问2024年的某个事件你会得到类似于图5所示的回答。在LLM的上下文中 知识截止日期是指模型的训练数据包含信息的最近时间点。模型可以访问广泛的文本数据其中包含来自不同来源的关于该日期事件的信息。 模型用来生成响应并提供信息。在此截止日期之后发生或发布的任何内容模型都不知道因为它没有包含在训练数据集中因此它无法提供有关截止日期之后发生的事件、发展或研究的信息。Figure5 Example of a knowledge cutoff date disclaimer图5 知识截止日期免责声明示例2.2. 过时的信息一个不太明显的限制是LLM有时可以提供过时的回答。虽然它们可以在知识截止之前提供详细而准确的信息但它们可能无法反映最近的发展。例如截至2023年底 马克·库班(Mark Cuban)将其在达拉斯独行侠特许经营权中的多数股权出售给了阿德尔森家族和杜蒙家族同时保留了少数股权。这一重大更新凸显了过去正确的信息可能会过时。例如在关于达拉斯独行侠的查询中图6所示的回答反映了库班是唯一所有者但这已不再准确(Rader2023)。Figure6 Sometimes ChatGPT responds with outdated information.图6 有时ChatGPT会回复过时的信息这凸显了定期更新模型训练数据或使其能够获取实时信息的重要性。随着事件和事实的不断演变即使是所有权结构等小细节也会显著影响我们对组织或个人的看法。这一局限性凸显了确保人工智能系统在动态环境中保持准确性和相关性的重要性。2.3. 纯粹的幻觉LLLMs的另一个众所周知的局限性是即使答案中包含不正确或捏造的信息它们也倾向于提供自信的答案。人们可能会认为尽管这些模型具有知识截止日期但它们提供了截至该日期的准确事实数据。然而即使是关于截止日期之前发生的事件的信息也可能是不可靠的。一个突出的例子是美国的律师向法院提交了虚假、虚构的法律引文却不知道这些引文是由ChatGPT生成的(Neumeister2023)。这种自信的错误通常被称为幻觉。 模型输出的信息听起来似是而非但事实上并不正确或完全是捏造的。外部引用(如URL、学术引用或WikiData ID等标识符)尤其容易出现这种行为。幻觉之所以出现是因为LLM不是推理引擎。它们是经过训练的概率语言模型根据训练数据中的模式来预测下一个代币听起来不错。它们不像人类那样了解事实。相反它们通过猜测最有可能的续集来生成文本。 不管这是不是真的。统计模式匹配和实际理解之间的根本差异是LLMs与人类认知的区别。为了说明这一点我们可以让ChatGPT提供达拉斯独行侠NBA球队的WikiData ID。如图7所示模型自信地返回了一个标识符–但这是不正确的。Figure7 ChatGPT can produce responses with incorrect information.图7ChatGPT 可能会生成错误信息的回答模型果断地回复了一个遵循wikidata格式的ID。但是如果您验证此信息则可以观察到Q152232是电影《女人之光》 (https://www.wikidata.org/wiki/Q152232) 。因此用户必须认识到LLMs虽然通常信息丰富但并非万无一失而且可能会产生错误信息。关键是要批判性地对待他们的回答并通过可靠的外部来源验证其准确性尤其是在精确度和事实正确性为核心的环境中。2.4. 缺乏隐私信息如果你正在使用LLM构建一个公司聊天机器人你可能希望它回答涉及内部或专有信息的问题这些信息或事件并不公开。在这种情况下即使这些信息或事件发生在LLM’s的知识截止日期之前它们也不会成为其训练数据的一部分。因此模型无法对此类查询生成准确的响应如图8所示。Figure8 ChatGPT didn’t have access to some private or confidential information during training.图8 ChatGPT在培训期间没有权限访问某些私人或机密信息一个潜在的解决方案是公开公司的内部信息希望将其纳入LLM的培训数据集。然而这种方法既不实用也不安全。相反我们将探索并展示更有效的策略来克服这些限制同时保持数据隐私和控制。关于LLM的其他限制的说明虽然本文将重点探讨LLM在回答中提供事实正确且最新信息的局限性但也必须承认LLM还有其他限制。其中一些包括响应中的偏见——LLM有时会产生带有偏见的响应反映训练数据中的偏见。缺乏理解和上下文——尽管大型语言模型复杂却并不真正理解文本。他们根据从数据中学习到的模式处理语言这意味着他们可能会忽略细微差别和语境上的微妙之处。提示注入的脆弱性——大型语言模型容易遭受提示注入攻击恶意用户通过输入控模型生成不当、偏见或有害的响应。这一漏洞对确保LLM应用在现实场景中的安全性和完整性构成了重大挑战。反应不一致——LLMs在多次交互中可能对同一问题产生不同的答案。这种不一致性源于它们的概率性质和缺乏持久记忆这可能妨碍它们在需要稳定性和重复性的应用中的实用性。本文致力于探讨和解决LLM在生成事实准确且及时回答方面的特定局限性。虽然我们认识到大型语言模型的其他局限性但本次讨论不会涵盖它们。克服LLM的局限性LLM是功能强大的工具但在处理特定领域的问题或获取专业的最新知识时它们往往会遇到一些限制。在商业环境中实现类似ChatGPT的应用程序需要精确且事实准确的输出。为了克服这些挑战 我们可以使用监督微调和RAG等方法向LLM注入特定领域的知识。在本节中我们将探讨这些方法是如何工作的以及如何应用它们来向LLM注入特定领域的知识。3.1. 监督微调起初我们很多人认为可以通过额外的训练来克服LLM的限制。例如我们可以通过不断更新模型来克服知识截止日期的限制。然而要有效地解决这个限制我们首先需要更好地理解LLM的训练。如Andrew Karpathy所述 (https://www.youtube.com/watch?vbZQun8Y4L2A) 像ChatGPT这样的LLM的训练可以分为以下四个阶段:1、预训练-模型读取大量文本通常超过一万亿个令牌以学习基本的语言模式。它练习预测句子中的下一个单词。这是基础步骤就像在你会写作之前学习词汇和语法一样。这是资源最密集的阶段。 这可能需要数千个GPU并可能需要几个月的持续训练。2、有监督的微调——模型会接收到特定的高质量对话示例以增强其像一位有帮助的助手那样进行回应的能力。它会继续练习语言但现在的重点是生成有用且准确的回应。可以将其视为从基础语言学习阶段过渡到练习对话技能的阶段。与预训练相比这所需的资源要少得多如今即使是针对较小的 LLM 模型也可以在单台笔记本电脑上运行。3、奖励建模 — 该模型通过比较对相同问题的不同回答来学习区分好与坏的回应。这就像有一位教练向模型展示什么是好的表现这样模型就可以努力复制这种品质。4、强化学习 — 该模型与用户或模拟环境进行互动以根据反馈进一步调整其回应。这与学习一项运动类似不仅通过训练还通过玩实际游戏并从体验中学习来练习。 由于预训练阶段既昂贵又耗时因此不适合持续更新因此我们的想法是使用监督微调阶段来克服LLM的限制。在监督微调阶段您向语言模型提供输入提示的具体示例以及您希望模型生成的相应输出。图9所示就是这样一个例子。Figure9 Sample record of a supervised finetuning dataset图9 监督微调数据集的样本记录图9展示了一个可用于微调 LLM 的问答对的示例。在这个示例中输入提示或问题涉及哪支球队赢得了 2023 年 NBA 冠军对应的答案是丹佛掘金队。理论依据是通过这个示例LLM 会将这一事实纳入其对语言的数学表示中并能够回答围绕 2023 年 NBA 总冠军的问题。一些研究表明有监督的微调可以提升 LLM 的真实性Tian et al., 2023。然而其他使用不同方法的研究也表明LLM 很难通过微调学习新的事实信息Ovadia et al., 2023 。虽然有监督的微调可以增强模型的总体知识但这仍是一个复杂且不断发展的研究领域。因此在当前的技术发展阶段在生产环境中部署一个可靠、经过微调的语言模型会面临重大挑战。幸运的是存在一种更高效、更简单的方法来解决 LLMs 的知识局限性问题。3.2. 检索增强生成提升LLM准确性并克服其局限性的第二种策略是RAG工作流程它将LLM与外部知识库结合以提供准确且最新的回答。与其依赖LLM的内部知识不如直接在输入提示中提供相关事实或信息Lewis等2020。该概念RAG利用LLM在理解和生成自然语言方面的优势同时提示中提供事实信息减少对LLM内部知识库的依赖从而减少幻觉。RAG工作流程主要分为两个阶段检索增强生成检索阶段相关信息来自外部知识库或数据库。在增强生成阶段这些检索到的信息与用户输入结合增强LLM提供的上下文使其能够生成基于可靠外部事实的响应。RAG的工作流程如图10所示。Figure10 Providing relevant information to the LLM as part of the input图10 作为输入的一部分向LLM提供相关信息如前所述LLM擅长理解自然语言并遵循提示中的指令。在RAG工作流程中目标转向面向任务的响应生成LLM遵循一套指令。该过程涉及使用检索工具从特定知识库中获取相关文档。LLM随后根据所提供文件生成答案确保回答准确、上下文相关且符合具体指南。这种系统化的方法将答案生成过程转变为一个有针对性的任务即检查并利用检索到的信息生成最终答案。在输入提示中提供事实信息的示例见图11。图11展示了大型语言模型进程如何遵循RAG工作流程的提示指令的示例。该提示强调使用检索上下文以确保准确且相关的回答的重要性并可细分为提供背景——即引入相关信息的事实陈述——本案中丹佛掘金队以4比1战胜迈阿密热火队确认他们是2023年NBA冠军。这作为LLM的知识库输入。用户查询——一个具体问题“谁赢得了2023年NBA总冠军”指示LLM从提供的上下文中提取相关信息。生成答案——LLM的回复与检索的上下文相符“丹佛掘金赢得了2023年NBA总冠军。”Figure11 Providing relevant information to the answer as part of the prompt图11 作为提示的一部分为答案提供相关信息你可能会好奇如果用户必须同时提供背景和问题RAG流程的优势是什么实际上检索系统独立于用户运行。用户只需提供问题检索过程则在幕后进行如图12所示。Figure12 Populating the relevant data from the user and knowledge base into the prompt template and then passing it to an LLM to generate the final answer图12 将用户和知识库的相关数据填充到提示模板中然后交给大型语言模型生成最终答案在RAG流程中用户首先提出一个问题。在幕后系统将该问题转化为搜索查询并从公司文档、知识文章或数据库等来源检索相关信息。高级检索算法会找到最合适的内容然后将其与原始问题结合形成丰富的提示。该提示被发送给大型语言模型LLMLLM根据问题和检索的上下文生成响应。整个检索过程是自动的用户无需额外输入除了最初的问题。这使得RAG既无缝又高效不仅提升事实准确性还能减少产生幻觉答案的可能性。RAG方法因其简洁高效而获得了主流流行。它现在也成为了ChatGPT界面的一部分LLM可以利用网络搜索搜索相关信息然后生成最终答案。付费版ChatGPT用户可能熟悉如图13所示的RAG流程。Figure13 ChatGPT uses Web Search to find relevant information to generate an up-to-date answer.图13 ChatGPT利用网络搜索寻找相关信息生成最新的答案虽然 ChatGPT 中 RAG 的具体实现未公开但我们可以尝试推断它在底层的作用。当LLM出于某种原因决定需要提取额外信息时它可以向Web搜索输入查询。我们并不确切知道它如何浏览搜索结果、解析网页信息或判断是否获取了足够的信息。不过我们知道它在网页搜索时使用了关键词并根据官方NBA网站上的信息生成了最终回复https://www.nba.com/playoffs/2023/the-finals。知识图谱作为RAG应用数据存储在计划实施RAG应用时选择合适的存储解决方案非常重要。虽然数据库选项众多但我们认为知识图谱和图数据库尤其适合大多数RAG应用。知识图谱是一种利用节点表示概念、实体和关系连接这些节点的数据结构。知识图示例见图14。Figure14 A knowledge graph can store complex structured and unstructured data in a single database system.图14 知识图谱可以将复杂的结构化和非结构化数据存储在单一数据库系统中知识图谱高度灵活能够存储结构化信息如员工详情、任务状态和公司层级和非结构化信息如文章内容。如图1.14所示这种双重能力使其非常适合复杂的RAG应用。结构化数据允许精确高效地查询以回答诸如“特定员工被分配了多少任务”或“哪些员工向特定经理汇报”等问题。例如在图1.14中结构化数据如“Sam Altman是OpenAI的首席执行官”或“John Doe自2023年1月1日起成为OpenAI员工”可以直接查询以回答诸如“谁是OpenAI的首席执行官”或“John Doe在公司工作多久了”这样的问题。同样结构化关系如“John Doe被分配到状态为已完成的任务”允许精确查询如“员工已完成哪些任务”或“OpenAI中谁被分配到特定任务”这一能力对于从复杂且相互关联的数据中生成可作的洞察至关重要。另一方面非结构化数据如文章文本通过提供丰富的上下文信息补充结构化数据增加深度和细致差别。例如图1.14中的非结构化文章节点提供了关于新LLM模型和嵌入的详细信息但没有结构化框架它无法回答诸如“这篇文章与OpenAI员工有什么关系”这样的具体问题。重要的是单靠非结构化数据无法回答所有类型的问题。虽然它可以为开放式或模糊查询提供洞察但缺乏实现过滤、计数或聚合等精确作所需的结构。例如回答“公司内完成了多少任务”或“哪些员工被分配到与OpenAI相关的任务”需要结构化的关系和属性如图1.14右侧所示。没有结构化数据这类查询需要详尽的文本解析和推断计算量大且常不精确。通过将结构化和非结构化信息整合在同一框架中知识图谱实现了两者无缝融合成为高效且准确地回答RAG应用中广泛问题的强大工具。此外非结构化数据与结构化数据之间的明确连接解锁了高级检索策略如将文本中的实体与图节点连接或将结构化结果与源段落进行上下文化这些都难以仅用任何类型的数据实现。总结大型语言模型LLM如ChatGPT基于transformer架构能够通过从大量文本数据中学习模式高效地处理和生成文本。虽然LLM在自然语言理解和生成方面表现出卓越的能力但它们存在固有的局限比如知识截止、可能生成过时或幻觉信息以及无法访问私人领域特定的知识。由于资源限制和定期更新模型的复杂性持续微调LLM以增强其内部知识库并不切实际。RAG通过将LLM与外部知识库结合解决局限通过直接将相关事实注入输入提示提供准确且丰富的上下文响应。RAG的实现传统上侧重于非结构化数据源限制了其在需要结构化、精确和相互关联信息任务时的范围和有效性。知识图谱利用节点和关系来表示和连接实体和概念整合结构化和非结构化数据提供整体的数据表示。将知识图谱整合进RAG工作流程可以增强其检索和组织上下文相关数据的能力使LLM能够生成准确、可靠且可解释的响应。AI时代未来的就业机会在哪里答案就藏在大模型的浪潮里。从ChatGPT、DeepSeek等日常工具到自然语言处理、计算机视觉、多模态等核心领域技术普惠化、应用垂直化与生态开源化正催生Prompt工程师、自然语言处理、计算机视觉工程师、大模型算法工程师、AI应用产品经理等AI岗位。掌握大模型技能就是把握高薪未来。那么普通人如何抓住大模型风口AI技术的普及对个人能力提出了新的要求在AI时代持续学习和适应新技术变得尤为重要。无论是企业还是个人都需要不断更新知识体系提升与AI协作的能力以适应不断变化的工作环境。因此这里给大家整理了一份《2025最新大模型全套学习资源》包括2025最新大模型学习路线、大模型书籍、视频教程、项目实战、最新行业报告、面试题等带你从零基础入门到精通快速掌握大模型技术由于篇幅有限有需要的小伙伴可以扫码获取1. 成长路线图学习规划要学习一门新的技术作为新手一定要先学习成长路线图方向不对努力白费。这里我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。2. 大模型经典PDF书籍书籍和学习文档资料是学习大模型过程中必不可少的我们精选了一系列深入探讨大模型技术的书籍和学习文档它们由领域内的顶尖专家撰写内容全面、深入、详尽为你学习大模型提供坚实的理论基础。书籍含电子版PDF3. 大模型视频教程对于很多自学或者没有基础的同学来说书籍这些纯文字类的学习教材会觉得比较晦涩难以理解因此我们提供了丰富的大模型视频教程以动态、形象的方式展示技术概念帮助你更快、更轻松地掌握核心知识。4. 大模型项目实战学以致用当你的理论知识积累到一定程度就需要通过项目实战在实际操作中检验和巩固你所学到的知识同时为你找工作和职业发展打下坚实的基础。5. 大模型行业报告行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估以了解哪些行业更适合引入大模型的技术和应用以及在哪些方面可以发挥大模型的优势。6. 大模型面试题面试不仅是技术的较量更需要充分的准备。在你已经掌握了大模型技术之后就需要开始准备面试我们将提供精心整理的大模型面试题库涵盖当前面试中可能遇到的各种技术问题让你在面试中游刃有余。为什么大家都在学AI大模型随着AI技术的发展企业对人才的需求从“单一技术”转向 “AI行业”双背景。企业对人才的需求从“单一技术”转向 “AI行业”双背景。金融AI、制造AI、医疗AI等跨界岗位薪资涨幅达30%-50%。同时很多人面临优化裁员近期科技巨头英特尔裁员2万人传统岗位不断缩减因此转行AI势在必行这些资料有用吗这份资料由我们和鲁为民博士(北京清华大学学士和美国加州理工学院博士)共同整理现任上海殷泊信息科技CEO其创立的MoPaaS云平台获Forrester全球’强劲表现者’认证服务航天科工、国家电网等1000企业以第一作者在IEEE Transactions发表论文50篇获NASA JPL火星探测系统强化学习专利等35项中美专利。本套AI大模型课程由清华大学-加州理工双料博士、吴文俊人工智能奖得主鲁为民教授领衔研发。资料内容涵盖了从入门到进阶的各类视频教程和实战项目无论你是小白还是有些技术基础的技术人员这份资料都绝对能帮助你提升薪资待遇转行大模型岗位。大模型全套学习资料已整理打包有需要的小伙伴可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
版权声明:本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

盘石 网站建设网站设计开题报告范文

有需要的同学,源代码和配套文档领取,加文章最下方的名片哦 一、项目演示 项目演示视频 二、资料介绍 完整源代码(前后端源代码SQL脚本)配套文档(LWPPT开题报告)远程调试控屏包运行 三、技术介绍 Java…

张小明 2025/12/25 21:23:14 网站建设

网站没询盘怎么做推广现在出入邯郸最新规定

NCM音乐解锁神器:一键将加密格式转换为通用MP3 【免费下载链接】ncmdump 项目地址: https://gitcode.com/gh_mirrors/ncmd/ncmdump 还在为网易云音乐的NCM格式文件发愁吗?这些加密的音乐文件在其他播放器上无法播放,让很多音乐爱好者…

张小明 2025/12/25 23:06:40 网站建设

定制企业网站多少钱深圳互动网站建设

网络构建与PF防火墙实用指南 1. 网络构建基础 1.1 高性能、低维护与安全的网络 构建网络时,我们追求的是高性能、低维护成本以及高安全性。高性能确保网络能够快速处理数据传输,满足各种应用的需求;低维护意味着减少日常管理的工作量,提高工作效率;而安全则是保护网络免…

张小明 2025/12/26 6:52:03 网站建设

html 单页网站郑州高端做网站

Linux 系统的电源管理与进程线程机制解析 1. CPUIdle 驱动 CPUIdle 与 CPUFreq 子系统类似,由属于 BSP 的驱动和决定策略的调节器组成。不过,与 CPUFreq 不同的是,CPUIdle 的调节器在运行时不能更改,且没有用户空间调节器的接口。 CPUIdle 在 /sys/devices/system/cpu/…

张小明 2025/12/26 6:51:56 网站建设

个人网站建设作用jsp与网站开发期末试题

【题目描述】有n个函数,分别为F1,F2,...,Fn。定义Fi(x)Aix2BixCi(x∈N∗)。给定这些Ai、Bi和Ci,请求出所有函数的所有函数值中最小的m个(如有重复的要输出多个)。【输入】第一行输入两个正整数n和m。以下n行每行三个正整数&#x…

张小明 2025/12/26 6:51:50 网站建设

手机做网站哪家好外包加工网免押金

Perl在CGI脚本与文件目录管理中的应用 在Web开发和文件管理领域,Perl语言展现出了强大的功能和灵活性。下面我们将详细探讨Perl在CGI脚本编写以及文件和目录管理方面的具体应用。 1. 使用Perl编写CGI脚本 在Web开发中,CGI(Common Gateway Interface)脚本起着重要作用,它…

张小明 2025/12/26 3:42:55 网站建设